当前位置:联邦科技 >> 技术支持 >> 基于聚酰胺热熔胶的低压注塑封装技术

基于聚酰胺热熔胶的低压注塑封装技术

  聚酰胺热熔胶在现代封装工艺中起着越来越重要的作用,基于聚酰胺热熔胶的低压注塑工艺解决了低压状态下完成电子元器件封装的问题,具有重要的推广价值。
  低压注塑工艺
  这种低压注塑工艺与热塑性塑料的注塑成型技术非常相似。颗粒状的热熔胶被加热至熔化,以便在液体状态下进行下一步加工,如图1。与传统的注塑成型技术不同的是,这种单组份热熔胶在特殊设计的模具中只需要2到40巴的低压就可以完成封装电子元器件的工艺。这种低压范围之所以成为可能,是因为这种热熔胶在熔融状态下的粘稠度很低,仅在1000到8000 mPa.s之间。另外,注塑的温度范围在180到240摄氏度之间,通过这种方法,可以温和地将线束、连接器、微动开关、传感器和电路板等精密、敏感的电子元器件封装起来,而不会对其产生伤害。图2为一个已经封装好的部件,被琥珀色或黑色的低压注塑材料所包封。在热熔胶被注入模具之后,随即开始冷却及固化,固化时间因胶量的不同而不同,大约在10到50秒之间。除了保护元器件免受周围环境的影响,该低压注塑材料还可以起到抗冲击,缓冲应力的作用。此外,该材料还可以作为电绝缘材料。首页上的图片显示了一个用琥珀色热熔胶料封装的电子元器件,由西门子VDO提供。


  低压注塑材料
  用于这种技术的化学材料是以二聚脂肪酸为基础的聚酰胺热熔胶。该脂肪酸来自于可再生资源,比如大豆、油菜籽和葵花籽,然后缩聚成二聚物。在缩聚过程中,该二聚脂肪酸与二胺发生反应,释放出水,生成聚酰胺热熔胶。这类产品的显著特点是耐温范围较广,也就是说,产品具有低温柔韧性,与此同时,还具有抗高温蠕变性。
  因为比其他热熔材料更加坚固结实,这些产品具有类似于塑料的特性。在注塑过程中,这些粘合剂确实需要发挥塑料的功能――换句话说,粘合剂不仅仅是两个基材表面之间的一层薄膜,而是外部3维构造不可或缺的一部分。热塑性塑料外壳可以完全被这些粘合剂所取代。
  除了机械上的优越性,这类产品的另一个重要特点是它的粘性。它可以将被封装的各层之间(比如电线绝缘材料,外壳材料以及电路板)牢固地粘合起来,从而形成一个完美的防水系统。
  一种材料的多样化特性只有通过融合不同的原材料来实现。由于这样的融合,这种聚酰胺材料没有一个明确的熔点,而是具有一个较为宽泛的软化范围。同样的道理,这种情况也适用于玻璃化温度,更准确地说,也是一个玻璃化温度范围。这些变化过程可以通过DSC热差扫描(DSC)图来说明,如表1。这是-120℃到250℃之间记录下来的第二轮数据。右边的熔融峰值描绘的是固体转变为液体的熔化点。左边是的玻璃化范围,从左向右描绘的从玻璃质状态到弹性体状态的软化过程。玻璃化温度被定义为玻璃化范围。表2中ASTM E 28的软化点描绘的是固体向液态的转化温度。这个数值对于工艺过程非常重要,因为注塑温度必须超过这一数值。这一软化点在DSC熔融峰值的末端,与这种聚酰胺材料的工作温度范围关系不大,因为聚酰胺在达到这一软化点之前已经够软了。


  与PA 6等聚酰胺材料不同,基于二聚脂肪酸的聚酰胺主要为非结晶质结构,因为它的晶体成分极少。图3和图4显示了不同的分子结构。PA 6的构造非常均匀,因此可以形成高度晶状体,结构非常紧凑,而聚酰胺热熔胶的分子结构极其复杂,非常不均匀。普通聚酰胺材料的强度和耐温度蠕变性比基于二聚脂肪酸的聚酰胺热熔胶胶强,而聚酰胺热熔胶则表现出更强的柔韧性和冷挠曲性。


  由于分子量大,熔融普通聚酰胺材料的粘稠度比聚酰胺热熔胶要高得多,因此只能用传统的注塑机来加工。而低粘度的聚酰胺热熔胶胶则可以用低压热熔胶注塑机来施工。
  由于其脂肪酸的序列性,基于二聚脂肪酸的聚酰胺具有非极性的部分,但整体仍主要是极性结构,可以吸附水分。由于含有脂肪酸成分,它对于的水分吸附性通常低于普通聚酰胺材料。在加工之前,聚酰胺热熔材料必须在防湿的条件下保存,以防止在熔化过程中产生气泡。